

Parkinson's disease: from the patient the lab and back

Prof. Charalampos Tzoulis Co-Director Neuro-SysMed Center Haukeland University Hospital & University of Bergen

Parkinson's disease: a major societal challenge

- ~2.5% of the population > 65 years
- ~5% of the population > 85 years
- Norway:
 - 2020: 8,000
- World
 - 2020: 10 million

Treatments don't work

Clinicaltrials.gov for PD

 1162 trial completed
 0 have achieved a disease-modulating effect

Key challenges in PD-research

Mechanisms

Disease models

What is the cause of Parkinson's disease?

Mitochondria produce ATP

Respiratory chain

PD and mitochondria

Chronic Parkinsonism in Humans due to a Product of Meperidine-Analog Synthesis Author(s): J. William Langston, Philip Ballard, James W. Tetrud and Ian Irwin

Langston et al 1983

MITOCHONDRIAL COMPLEX I DEFICIENCY IN PARKINSON'S DISEASE

SIR,—The cause of dopaminergic cell death in the substantia nigra of patients with Parkinson's disease is unknown. The meperidine analogue, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is selectively toxic for dopamine-containing cells of the substantia nigra and produces parkinsonism. 1-methyl-4-

Schapira et al 1989

BRAIN

Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations

Charalampos Tzoulis,^{1,2} Gia Tuong Tran,² Thomas Schwarzlmüller,^{3,4} Karsten Specht,^{5,6} Kristoffer Haugarvoll,^{1,2} Novin Balafkan,² Peer K. Lilleng,^{7,8} Hrvoje Miletic,^{2,9} Martin Biermann^{3,} and Laurence A. Bindoff^{1,2}

Tzoulis et al 2013

Mitochondrial homeostasis fails in PD

Controls

Gonzalo S. Nido

Parkinson's disease

Irene Flønes

Global complex I deficiency in the PD brain

Complex I

Acta Neuropathologica (2018) 135:409–425 https://doi.org/10.1007/s00401-017-1794-7

ORIGINAL PAPER

Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage

Irene Flønes Hrvoje Mileti Massimo Zev

Irene H. Flønes^{1,2} · Erika Fernandez-Vizarra³ · Maria Lykouri^{1,2} · Brage Brakedal^{1,2} · Geir Olve Skeie^{1,2} · Hrvoje Miletic^{4,5} · Peer K. Lilleng^{4,6} · Guido Alves^{7,8} · Ole-Bjørn Tysnes^{1,2} · Kristoffer Haugarvoll^{1,2} · Christian Dölle^{1,2} · Massimo Zeviani³ · Charalampos Tzoulis^{1,2}

Glitazones increase mitochondrial biogenesis and are associated with ~30% risk reduction for PD

GTZ «ever exposure»

Summary

- Impaired mitochondrial function plays an important role in the pathogenesis of Parkinson's disease
- 2. Pharmacological approaches to restore mitochondrial function may have merit as neuroprotective therapies for Parkinson's disease

Complex I deficiency causes NAD+ depletion and histone hyperacetylation

Histone acetylation regulates gene expression

 Increased histone acetylation > increased gene expression

Brain tissue

- Pathology-confirmed PD
 - ParkWest, n = 30

```
Prefrontal cortex
Brodmann 9-10
```

- Netherlands Brain Bank, n = 21
- Neurologically and neuropathologically healthy controls

– n = 50

Histone hyperacetylation in PD

Genome-wide mapping of H3K27ac

• Chromatin Immunoprecipitation Sequencing (ChIP-Seq)

First insight into the genomic landscape of histone acetylation in PD

Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for H3K27ac

H3K27 hyperacetylation is a genome-wide phenomenon in PD

Multiple significant differentially acetylated genes

Conclusion

- Genome-wide increase in histone(H3K27) acetylation in Parkinson's disease
- Histone acetylation is severely dysregulated and decoupled from gene expression in Parkinson's disease

Gia Tran

Lilah Toker

Janani Sundaresan

Clinical value: NAD deficiency can be corrected with nicotinamide riboside

NAD-PARK & NO-PARK: NADreplenishment therapy in PD

- Nicotinamide Riboside vs. placebo
- NAD-PARK: 01/03/2019
 n = 30 patients from Bergen
- NO-PARK: 15/03/2020
 - -n = 400 patients from 4 RHF

Brage Brakedal

Neuro-SysMed

Neuromics Group

Charalampos Tzoulis Kristoffer Haugarvoll Christian Dölle Gonzalo S. Nido Lilah Toker Irene Flønes Birgitte Berentsen Gia Tuong Thi Tran Thomas Schwarzlmüller Brage Brakedal Johannes J. Gaare **Romain Guitton** Fiona Dick Janani Sunadaresan Nelson Osuagwu Hanne Linda Nakkestad **Gry-Hilde Nilsen Dagny Ann Sandnes**

Funding:

Collaborators:

neuromics.org